Collective excitation and decay of waveguide-coupled atoms: from timed Dicke states to inverted ensembles

https://arxiv.org/abs/2204.04106

Christian Liedl, Sebastian Pucher, Felix Tebbenjohanns, Philipp Schneeweiss, Arno Rauschenbeutel

The collective absorption and emission of light by an ensemble of atoms is at the heart of many fundamental quantum optical effects and the basis for numerous applications. However, beyond weak excitation, both experiment and theory become increasingly challenging. Here, we explore the regimes from weak excitation to inversion with ensembles of up to one thousand atoms that are trapped and optically interfaced using the evanescent field surrounding an optical nanofiber. We realize strong inversion, with about 80% of the atoms being excited, and study their subsequent radiative decay into the guided modes. The data is very well described by a simple model that assumes a cascaded interaction of the guided light with the atoms. Our results contribute to the fundamental understanding of the collective interaction of light and matter and are relevant for applications ranging from quantum memories to sources of nonclassical light to optical frequency standards.

Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light

Nature Photonics 16, 380 (2022)

https://doi.org/10.1038/s41566-022-00987-z

S. Pucher, C. Liedl, S. Jin, A. Rauschenbeutel, P. Schneeweiss

In a non-reciprocal optical amplifier, gain depends on whether the light propagates forwards or backwards through the device. Typically, one requires either the magneto-optical effect, temporal modulation or optical nonlinearity to break reciprocity. By contrast, here we demonstrate non-reciprocal amplification of fibre-guided light using Raman gain provided by spin-polarized atoms that are coupled to the nanofibre waist of a tapered fibre section. The non-reciprocal response originates from the propagation-direction-dependent local polarization of the nanofibre-guided mode in conjunction with polarization-dependent atom–light coupling. We show that this novel mechanism can also be implemented without an external magnetic field and that it allows us to fully control the direction of amplification via the atomic spin state. Our results may simplify the construction of complex optical networks. Moreover, by using other suitable quantum emitters, our scheme could be implemented in photonic integrated circuits and circuit quantum electrodynamics.

Polaritons in Two-dimensional Parabolic Waveguides

ACS Photonics 2021 8 (6), 1840-1846 (2021)

https://pubs.acs.org/doi/10.1021/acsphotonics.1c00481

T. P. Rasmussen, P. A. D. Gonçalves, S. Xiao, S. Hofferberth, N. A. Mortensen, and J. D. Cox

The suite of highly confined polaritons supported by two-dimensional (2D) materials constitutes a versatile platform for nano-optics, offering the means to channel light on deep-subwavelength scales. Graphene, in particular, has attracted considerable interest due to its ability to support long-lived plasmons that can be actively tuned via electrical gating. While the excellent optoelectronic properties of graphene are widely exploited in plasmonics, its mechanical flexibility remains relatively underexplored in the same context. Here, we present a semianalytical formalism to describe plasmons and other polaritons supported in waveguides formed by bending a 2D material into a parabolic shape. Specifically, for graphene parabolas, our theory reveals that the already large field confinement associated with graphene plasmons can be substantially increased by bending an otherwise flat graphene sheet into a parabola shape, thereby forming a plasmonic waveguide without introducing potentially lossy edge terminations via patterning. Further, we show that the high field confinement associated with such channel polaritons in 2D parabolic waveguides can enhance the spontaneous emission rate of a quantum emitter near the parabola vertex. Our findings apply generally to 2D polaritons in atomically thin materials deposited onto grooves or wedges prepared on a substrate or freely suspended in a quasi-parabolic (catenary) shape. We envision that both the optoelectronic and mechanical flexibility of 2D materials can be harnessed in tandem to produce 2D channel polaritons with versatile properties that can be applied to a wide range of nano-optics functionalities, including subwavelength polaritonic circuitry and bright single-photon sources.

Emergent quantum correlations and collective behavior in non-interacting quantum systems subject to stochastic resetting

https://doi.org/10.48550/arXiv.2202.12655

Matteo Magoni, Federico Carollo, Gabriele Perfetto and Igor Lesanovsky

We investigate the dynamics of a non-interacting spin system, undergoing coherent Rabi oscillations, in the presence of stochastic resetting. We show that resetting generally induces long-range quantum and classical correlations both in the emergent dissipative dynamics and in the non-equilibrium stationary state. Moreover, for the case of conditional reset protocols — where the system is reinitialized to a state dependent on the outcome of a preceding measurement — we show that, in the thermodynamic limit, the spin system can feature collective behavior which results in a phenomenology reminiscent of that occurring in non-equilibrium phase transitions. The discussed reset protocols can be implemented on quantum simulators and quantum devices that permit fast measurement and readout of macroscopic observables, such as the magnetisation. Our approach does not require the control of coherent interactions and may therefore highlight a route towards a simple and robust creation of quantum correlations and collective non-equilibrium states, with potential applications in quantum enhanced metrology and sensing.

Thermodynamics of quantum-jump trajectories of open quantum systems subject to stochastic resetting

https://doi.org/10.48550/arXiv.2112.05078

Gabriele Perfetto, Federico Carollo, Igor Lesanovsky

We consider Markovian open quantum systems subject to stochastic resetting, which means that the dissipative time evolution is reset at randomly distributed times to the initial state. We show that the ensuing dynamics is non-Markovian and has the form of a generalized Lindblad equation. Interestingly, the statistics of quantum-jumps can be exactly derived. This is achieved by combining techniques from the thermodynamics of quantum-jump trajectories with the renewal structure of the resetting dynamics. We consider as an application of our analysis a driven two-level and an intermittent three-level system. Our findings show that stochastic resetting may be exploited as a tool to tailor the statistics of the quantum-jump trajectories and the dynamical phases of open quantum systems.

Exact solution of a boundary time-crystal phase transition: Time-translation symmetry breaking and non-Markovian dynamics of correlations

Phys. Rev. A 105, L040202 (2022)

https://doi.org/10.1103/PhysRevA.105.L040202

Federico Carollo and Igor Lesanovsky

The breaking of the continuous time-translation symmetry manifests, in Markovian open quantum systems, through the emergence of nonstationary dynamical phases. Systems that display nonequilibrium transitions into these phases are referred to as time crystals, and they can be realized, for example, in many-body systems governed by collective dissipation and long-ranged interactions. Here, we provide a complete analytical characterization of a boundary time-crystal phase transition. This involves exact expressions for the order parameter and for the dynamics of quantum fluctuations, which, in the time-crystalline phase, remains asymptotically non-Markovian as a consequence of the time-translation symmetry breaking. We demonstrate that boundary time crystals are intrinsically critical phases, where fluctuations exhibit a power-law divergence with time. Our results show that a dissipative time-crystal phase is far more than merely a classical nonlinear and nonstationary (limit cycle) dynamics of a macroscopic order parameter. It is rather a genuine many-body phase where the properties of correlations distinctly differ from those of stationary ones.

Designing nonequilibrium states of quantum matter through stochastic resetting

Phys. Rev. B 104, L180302 (2021)

https://doi.org/10.1103/PhysRevB.104.L180302

Gabriele Perfetto, Federico Carollo, Matteo Magoni, and Igor Lesanovsky

We consider closed quantum many-body systems subject to stochastic resetting. This means that their unitary time evolution is interrupted by resets at randomly selected times. When a reset takes place, the system is reinitialized to a state chosen from a set of reset states conditionally on the outcome of a measurement taken immediately before resetting. We construct analytically the resulting nonequilibrium stationary state, thereby establishing an explicit connection between quantum quenches in closed systems and the emergent open system dynamics induced by stochastic resetting. We discuss as an application the paradigmatic transverse-field quantum Ising chain. We show that signatures of its ground-state quantum phase transition are visible in the steady state of the reset dynamics as a sharp crossover. Our findings show that a controlled stochastic resetting dynamics allows one to design nonequilibrium stationary states of quantum many-body systems, where uncontrolled dissipation and heating can be prevented. These states can thus be created on demand and exploited, e.g., as a resource for quantum enhanced sensing on quantum simulator platforms.

Paper on Photon-photon interactions in Rydberg-atom arrays

https://arxiv.org/abs/2101.11375

L. Zhang, V. Walther, K. Mølmer, T. Pohl

We investigate the interaction of weak light fields with two-dimensional lattices of atoms, in which two-photon coupling establishes conditions of electromagnetically induced transparency and excites high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange interactions to long-range Rydberg-state interactions that span the entire array. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. Such strong photon-photon interactions in the absence of otherwise detrimental photon losses in Rydberg-EIT arrays opens up a promising approach for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.

Paper on Nonclassical Light from Exciton Interactions in a Two-Dimensional Quantum Mirror

https://arxiv.org/abs/2102.09358

V. Walther, L. Zhang, S. F. Yelin, and T. Pohl

Excitons in a semiconductor monolayer form a collective resonance that can reflect resonant light with extraordinarily high efficiency. Here, we investigate the nonlinear optical properties of such atomistically thin mirrors and show that finite-range interactions between excitons can lead to the generation of highly non-classical light. We describe two scenarios, in which optical nonlinearities arise either from direct photon coupling to excitons in excited Rydberg states or from resonant two-photon excitation of Rydberg excitons with finite-range interactions. The latter case yields conditions of electromagnetically induced transparency and thereby provides an efficient mechanism for single-photon switching between high transmission and reflectance of the monolayer, with a tunable dynamical timescale of the emerging photon-photon interactions. Remarkably, it turns out that the resulting high degree of photon correlations remains virtually unaffected by Rydberg-state decoherence, in excess of non-radiative decoherence observed for ground-state excitons in two-dimensional semiconductors. This robustness to imperfections suggests a promising new approach to quantum photonics at the level of individual photons.

Paper on Polariton Exchange Interactions in Multichannel Optical Networks

Physical Review Letters 123, 113605 (2019)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.113605

M. Khazali, C. R. Murray, and T. Pohl

We examine the dynamics of Rydberg polaritons with dipolar interactions that propagate in multiple spatial modes. The dipolar excitation exchange between different Rydberg states mediates an effective exchange between polaritons that enables photons to hop across different spatial channels. Remarkably, the efficiency of this photon exchange process can increase with the channel distance and becomes optimal at a finite rail separation. Based on this mechanism, we design a simple photonic network that realizes a two photon quantum gate with a robust π phase, protected by the symmetries of the underlying photon interaction and the geometry of the network. These capabilities expand the scope of Rydberg electromagnetically induced transparency towards multidimensional geometries for nonlinear optical networks and explorations of photonic many-body physics.